

Diplomarbeit zum Hochwasserschutz

Thema:

Erstellung eines Überflutungsschutzkonzepts

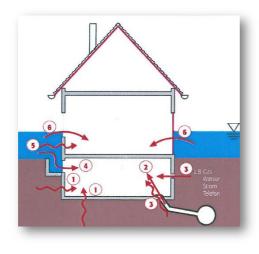
Diplomant:

Studium Bauwesen, Hochschule OWL

Betreuung:

Kreis Lippe, Untere Wasserbehörde Isringhausen GmbH & Co.KG

Inhalte:


- Betriebliche Auswirkungen bei Hochwasser
- Belastungsgrenzen im Kanalsystem
- Ermittlung des Gefährdungspotentials
- Wann ist der "Worst-case" erreicht?

© ISRINGHAUSEN 2014

Eindringmöglichkeiten von Wasser

Gefährdung durch Überflutung

- 1. Grundwasser durch Kellerwände oder Sohle
- 2. Rückstauwasser aus der Kanalisation
- 3. Grundwasser durch Umläufigkeiten bei Hausanschlüssen
- 4. Oberflächenwasser durch Lichtschächte, Kellerfenster, Kellerschächte
- 5. Oberflächenwasser infolge Durchsickerung der Außenwand
- 6. Oberflächenwasser durch Tür-, Tor- und Fensteröffnungen

Quelle: Hochwasserschutzfibel, 2006

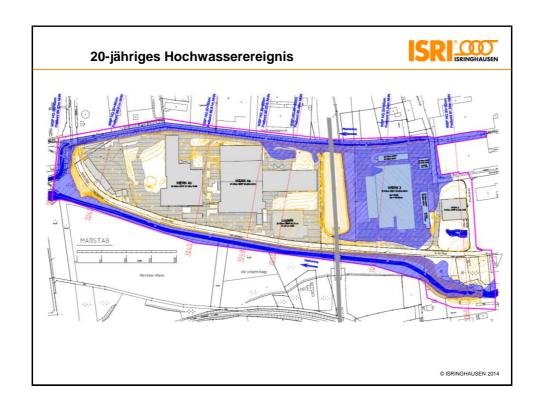
Nutzung von Bestandsunterlagen

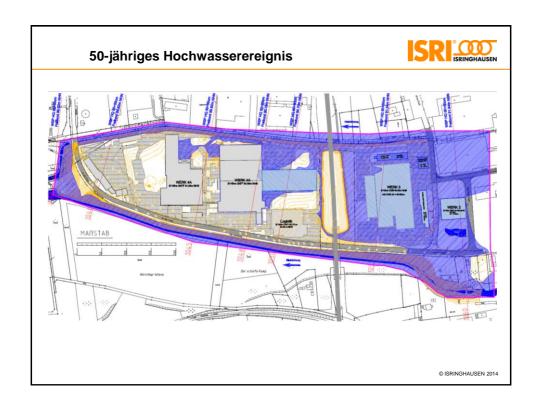
Rot: Schmutzwasser Blau: Regenwasser

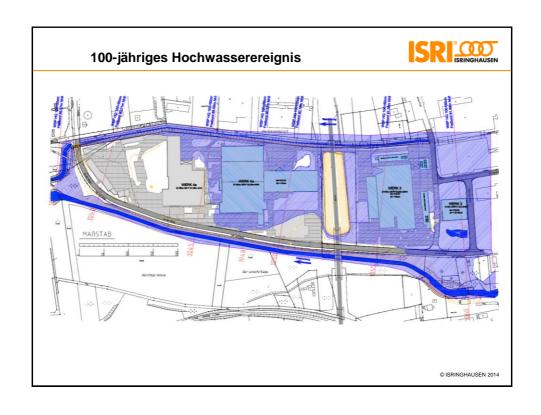
- Katalogisierung der Liegenschaft
 Aufnahme aller Haltungen, Schächte und Einläufe
 Kamerabefahrung zur Kanalinspektion

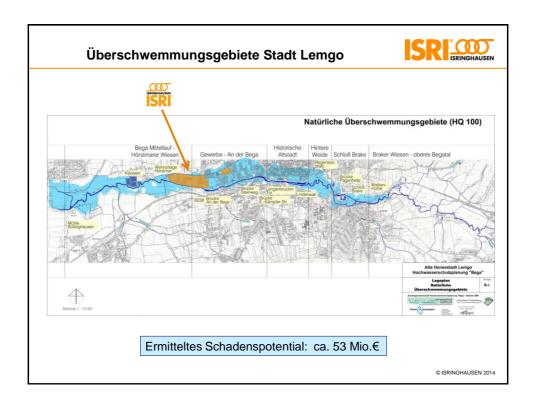
© ISRINGHAUSEN 2014

Geländevermessung






Durchführung der örtlichen Geländeaufnahme



Bildschirmausgabe mit Höhenlinien, Messpunkten und Überflutungsflächen

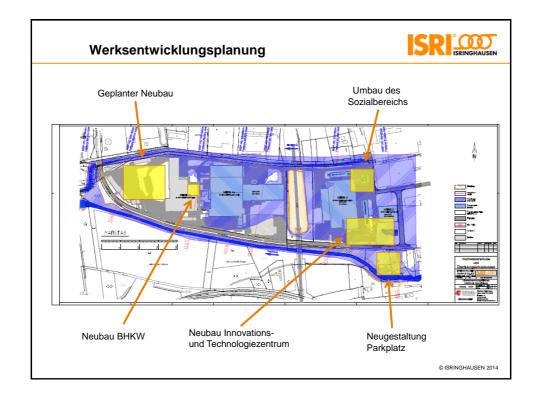
Lokalisierung von Risikozonen

Simulation der Überflutungsfläche Sitzmontage

Trafoanlage der Metallfertigung bei HQ100

© ISRINGHAUSEN 2014

Wasserstände HW100



Gefährdungsbereich	Wasserstand
Schaumteilefertigung	ca. 30 cm
Sitzfertigung / Prototypen	ca. 90 cm
Mess- und Prüflabor	ca. 90 cm
Metallfertigung	ca. 20 cm
Innovations- & Technologiezentrum	ca. 10 cm

Ermittlung der Wasserstände zur Abschätzung des Schadenpotentials

	densprogn	USE III	74 100		ISRIN
			Szenario		
Pos. Bezeic	nnung	100 JH TEUR	50 JH TEUR	20 JH TEUR	
1 Scha	umteilefertigung	xx €	xx €	xx €	
	deschäden irschäden				
2 Mes	s- und Prüflabor	xx €	xx €	xx €	
Inventa	rschäden				
3 Sitzf	ertigung / Prototypen	xx €	xx €	xx €	
	deschäden rschäden				
4 Meta	illfertigung	xx €	xx €	xx €	
	deschäden rschäden				
6 Produk	tionsausfall	xx €	xx €	xx €	
7 Produk	tionsmaterialschäden	xx €	xx €	xx €	Schadenspotential bei 100 JhHochwasse
8 Reinigu	ings- und Aufräumarbeiten	xx €	xx €	xx €	Del 100 JnHochwasse
9 Schäde	en an abgestellten Kfz	xx €	xx €	xx €	ca. XX Mio. Euro
SUMM	E .	xx €	xx €	xx €	

Neubau Innovations- und Technologiezentrum

<u>Maßnahmen</u>

- Erhöhung Sohlenhöhe
- Herstellung von Sickerflächen- keine Arbeitsbereiche im EG / Versorgung nur im 1.OG

© ISRINGHAUSEN 2014

Anpassung im Kanalsystem Rückstauklappen Schachtbauwerke <u>Hebeanlagen</u> Quelle: Bild 1 & 3: Kessel AG © ISRINGHAUSEN 2014

Innerbetriebliche Maßnahmen

<u>Maßnahmen</u>

- Duplizierung der Heizungsanlage (EG & 1.OG)
 Bodenlagerung bei Gefahrstoffgebinden vermeiden
 Lagerung auf poolfähigen Transportbehältern

© ISRINGHAUSEN 2014

Feste Schutzsysteme

Löschwasserrückhaltungen

Tanklager

Mobile Schutzsysteme

Mobile Schutzsysteme

- Nutzung von Löschwasserrückhaltesperren
- Einsatz von Sandsäcken oder BigPacks
- Nutzung von Tafeln oder Schalbrettern

© ISRINGHAUSEN 2014

Notfall-Equipment

Bevorratung von Notfall-Equipment

- Pumpen und Sauger
- Schachtabdeckungen und Rohrblasen
- Bindemittel, Werkzeuge
- Notstromaggregat, Kabeltrommeln
- Persönliche Schutzausrüstungen

Organisatorische Maßnahmen

1. Schulung von Mitarbeitern

Verhaltensweisen bei: Havarien

Stromausfall Brandfall Druckluftausfall Hochwasser Arbeitsunfälle

2. Inspektion und ReinigungsintervalleKontinuierliche Kontrolle und Reinigung

Kontinuierliche Kontrolle und Reinigung der Haltungen, Schächte und Einleitstellen

3. Alarmierungssystem der Stadt Lemgo Automatische telefonische Informierung bei Erreichung der Hochwasser-Warnstufe durch die Feuerwehr-Leitstelle

Reaktionszeit: ca. 2 Stunden

© ISRINGHAUSEN 2014

Betriebliche Handlungsfelder

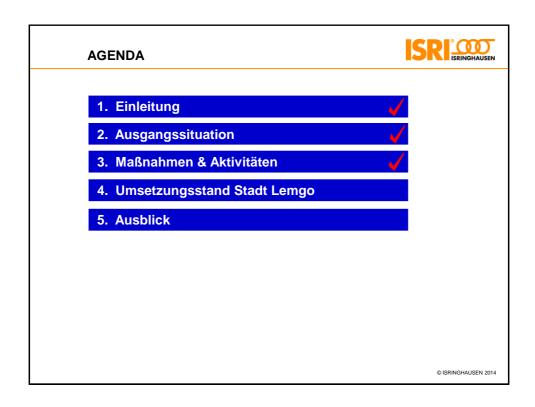
1. Flächenvorsorge

- gezielte Erhaltung von Flächen
- Intensive Prüfung bei Ausweitung und Bebauung

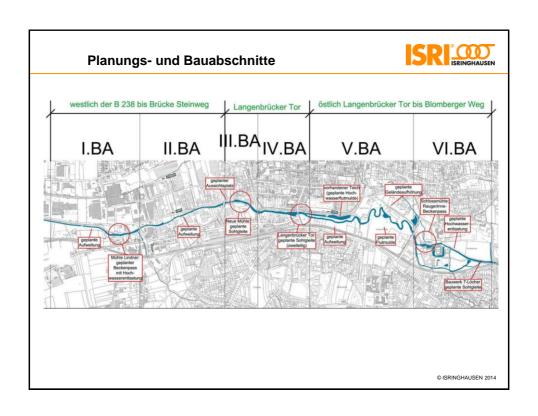
2. Bauvorsorge

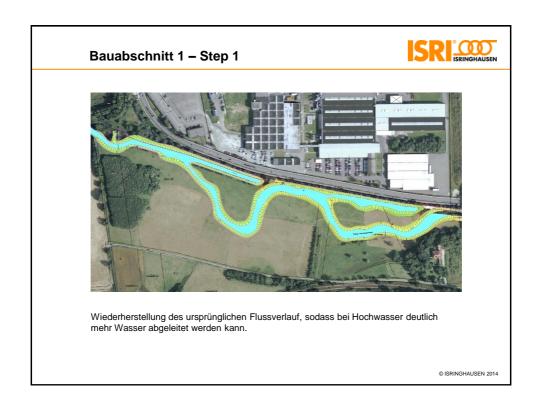
- Technische Maßnahmen zum Schutz von Bebauung und Verkehrswegen durch z.B. Deiche / Rückhaltebecken
- Überflutungssichere Gebäude

3. Verhaltensvorsorge


- Etablierung von Frühwarnsystemen
- Erstellung von Alarmplänen

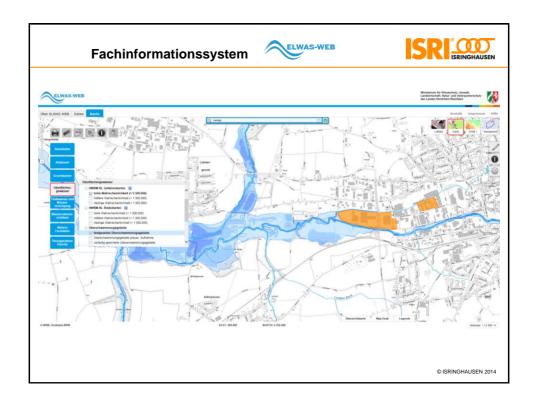
4. Risikovorsorge


- Absicherung des Schadensfalls


© ISRINGHAUSEN 2014

Maßnahmenhirachie

Hochwasser-Aktionsplan Stadt Lemgo Zielvorgabe: - Hochwassersicherheit - Ökologische Verbesserung - Aufwertung des Stadtbildes - Erholungsfunktion Realisierung: 1. Effektive Umsetzung durch eine Gesamtplanung 2. Vorherige Abstimmung mit betroffenen Anliegern, Vereinen und Behörden - Anlieger, Gewerbebetriebe und Stauanlagenbetreiber - Stadtwerke Lemgo - Landesverband Lippe - Kreis Lippe und Bezirksregierung - Denkmalbehörde - Interessengruppen: Fischerei und Kanuten - Anpassung an EU-WRRL – Strahlwirkungskonzept Investition: 8,5 Mio.€ bis zum Jahr 2020 © ISRINGHAUSEN 2014



	ISKINGH
1. Einleitung	✓
2. Ausgangssituation	\checkmark
3. Maßnahmen & Aktivitäten	✓
4. Umsetzungsstand Stadt Lemgo	\checkmark
5. Ausblick	

Weitere Verfahrensweise

Aktivitäten

- 1. Problematik "Urbane Sturzfluten"
- 2. Notfallübungen intensivieren
- 3. Beachtung bei Sanierung und Neubauten
- 4. Wissenstransfer an alle AUNDE-Werke weltweit -

"Wir hoffen, dass wir bis zur vollständigen Umsetzung des Hochwasser-Aktionsplanes der Stadt Lemgo von gravierenden Starkregenereignissen verschont bleiben …!"