

## 2. Projektbegleit-AK GROWA+ NRW 2021

# Stickstoff-Deposition in Deutschland 2000-2015

Markus Geupel Fachgebiet II 4.3 Luftreinhaltung & terrestrische Ökosysteme

Mit Unterstützung / Folien von: TNO: Carlijn Hendriks, Martijn Schaap

Thünen: Andreas Schmitz

Ausgangslage: Stickstoff-Deposition in Deutschland 2000-2015

## Gliederung

- 1 **AUSGANGSLAGE**
- 2 <u>METHODIK</u>
- 3 **ERGEBNISSE**
- 4 **EVALUIERUNG**
- 5 **ANWENDUNG**
- 6 AUSBLICK, NÄCHSTE SCHRITTE

## Limitierendes Element: Eutrophierung durch Stickstoffeinträge









[1] Heiden auf sandigen Böden (Calluna-Heiden)

Foto ©: Maren Meyer-Grünefeldt

[2] Halbtrockenrasen auf karbonatischem Untergrund

Foto ©: Bundesamt für Naturschutz

[3] Birken-Eichenwald feuchter bis frischer Standorte

Foto ©: Fabian Wankmüller

[4] Sandtrockenrasen Foto ©: Robin Schmidt

#### **GEFÄHRDUNGSURSACHE**

- Rote Liste Pflanzenarten, Standortveränderungen durch Nährstoffeinträge
- Rote Liste Biotoptypen, Standortveränderungen durch Nährstoffeinträge

Ausgangslage: Stickstoffwirkungen auf terrestrische Ökosysteme

Beispiele für gefährdete Biotoptypen: Halbtrockenrasen auf karbonatischem Untergrund



#### Beschreibung

Sekundäres, durch extensive Bewirtschaftung entstandenes trockenes Grünland auf i.d.R. mittelgründigen flachbis Standorten mit Schwerpunkt an südexponierten Hängen oder auf trockenen Kuppen. Besonders artenreich in den südwestdeutschen Kalkgebieten entwickelt, nach Norden deutliche Arten-Verarmung. Traditionelle Bewirtschaftung regional unterschiedlich, einmalige Mahd oder extensive Beweidung durch Schafe.

| Pflanzensoziologische Einheiten                                                                                         | Rote Liste                                                          |
|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Trespen-Halbtrockenrasen  Bromion erecti BrBl. & Moor 36  Kalkblaugras-Halbtrockenrasen  Seslerio-Mesobromion Oberd. 57 | Rote Liste Deutschland –<br>stark gefährdet<br>Schwer regenerierbar |

| Critical Load |
|---------------|
| 15 – 25       |
| ##            |
| (E1.26)       |
|               |

| Code     | FFH                    | EUNIS |
|----------|------------------------|-------|
| 34.02.01 | 5130<br>*6110<br>*6210 | E1.2  |

#### Stickstoffwirkungen auf terrestrische Ökosysteme

#### Limitierendes Element: Eutrophierung durch Stickstoffeinträge Profiteure unter den Pflanzenarten









#### [1] Brennnessel (Urtica dioica)

Foto ©: Brennnessel at Burg Isenberg, Hattingen, Photo by Simplicius, 2004, GNU/FDL,

https://commons.wikimedia.org/wiki/File:Brenn nessel.jpg

[2] Dichter (untypischer)
Brombeerunterwuchs in Kiefernforst
Foto ©: Markus Geupel

[3] Dichter (untypischer) Holunderunterwuchs in Kiefernforst Foto ©: Gerhard Hofmann, Eberswalde

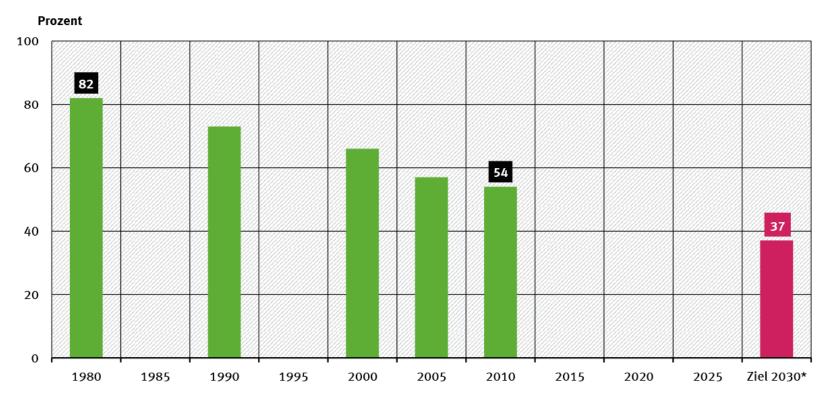
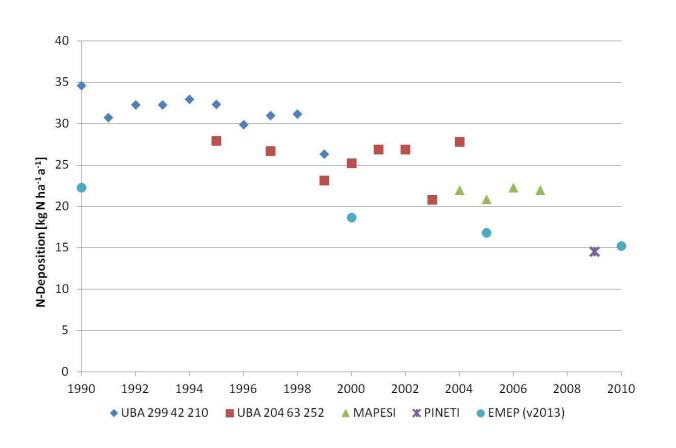

#### [4] Knoblauchsrauke

Foto ©: Knoblauchsrauke (Alliaria petiolata), Fotografin: Anke Hüper, Karlsruhe, https://commons.wikimedia.org/wiki/File:Knobl auchsrauke01.jpg Ausgangslage: Stickstoff-Deposition in Deutschland 2000-2015

Indikator: Zeitreihe der Critical Loads Überschreitungen mit international modellierter Stickstoffdeposition von EMEP

#### Nachhaltigkeits- & Biodiversitätsstrategie der Bundesregierung


# Anteil der Fläche empfindlicher Land-Ökosysteme mit Überschreitung der Belastungsgrenzen für Eutrophierung



<sup>\*</sup> Nachhaltigkeitsstrategie der Bundesregierung: Der Anteil der Flächen, die von zu hohen Stickstoffeinträgen betroffen sind, soll zwischen 2005 und 2030 um 35 % sinken. Bei einem Wert von 57 % im Jahr 2005 ergibt sich für 2030 ein Zielwert von 37 %.

Quelle: Europäische Umweltagentur (EEA), Technical Report No.11, 2014

## Bisher keine methodisch kontinuierliche Zeitreihe Deposition



Die Berechnungen wurden bisher in unabhängigen Forschungsvorhaben durchgeführt.

Verbesserungen konnten sukzessive integriert werden

Immer nur für Einzeljahre oder kurze Zeitreihen

Rückgerechnete (konsistente) EMEP-Zeitreihe zum Vergleich

## **Deutschlandweite Depositions-Modellierung mit LOTOS-EUROS**

"Fortschreibung und Weiterentwicklung der Methode zur Erfassung und Bewertung der Einträge von versauernden und eutrophierenden Luftschadstoffen in terrestrische Ökosysteme"

FKZ 3714 64 2010, Laufzeit 03/15 – 10/17

PINETI - Projektreihe

PINETI-3, Pollutant INput an EcosysTem Impact

Projektdurchführung, herzlichen Dank!





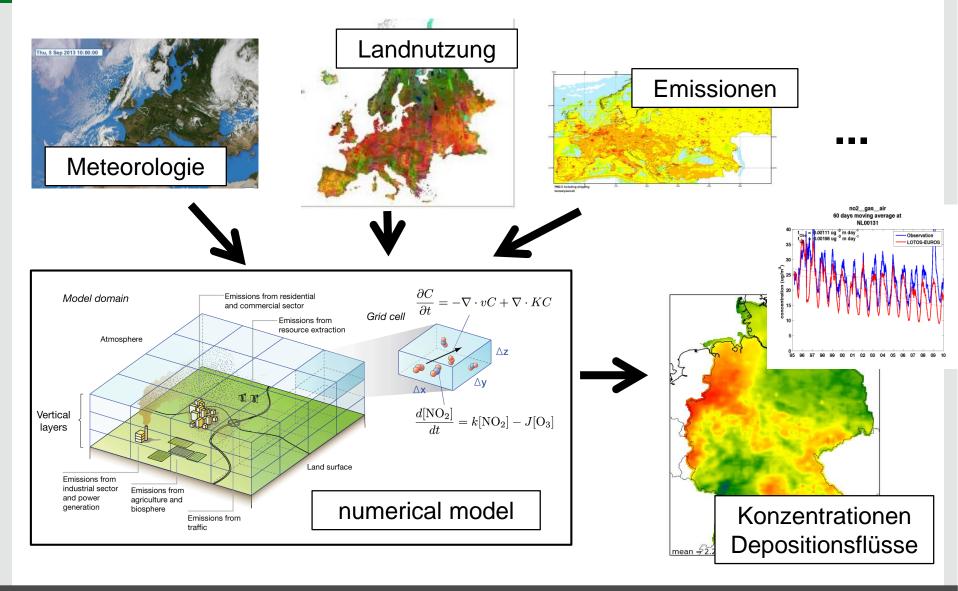




#### **Ergebnisse**

- Zeitreihe 2000-2015
- Deposition NH<sub>x</sub>, NO<sub>v</sub>, N<sub>ges</sub>
- Mittlerer Zeitpunkt ("mittleres Bezugsjahr") für Genehmigungsverfahren
- **Immissionskarten**

Vorstellung der Ergebnisse beim Fachgespräch am 24.10.2017 im UBA Dessau: https://clous.uba.de/index.php/s/y37H6w6r2ADZigz

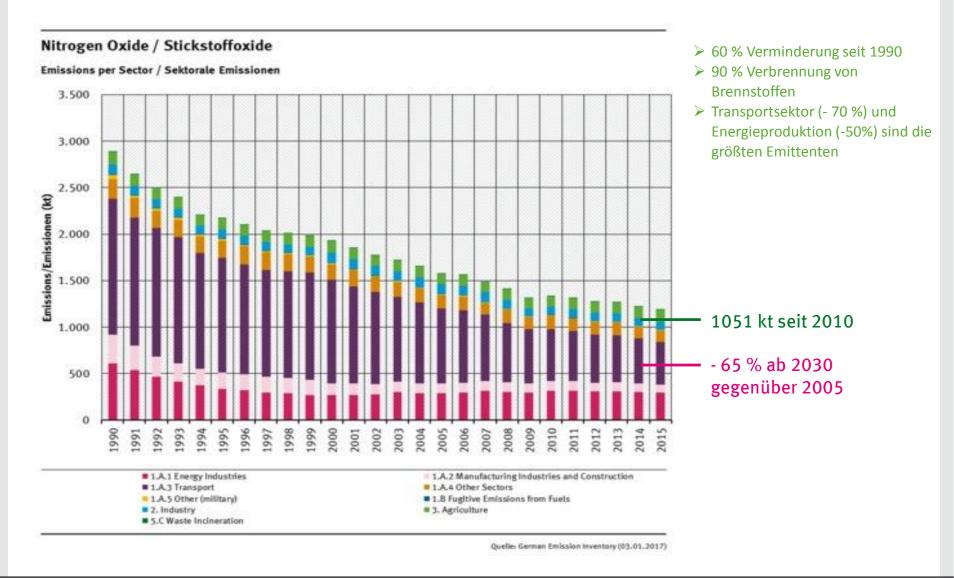

## **Grundlagen der UBA-Methodik**

| Depositionsfluss | Modellierung                                         | Räumliche<br>Auflösung | Anteil<br>(2009) |
|------------------|------------------------------------------------------|------------------------|------------------|
| Nass             | Geostatistik mit Messwerten der nassen<br>Deposition | 1*1 km²                | 54 %             |
| Trocken          | Widerstands-Modell LOTOS-EUROS                       | 7*7 km²                | 45%              |
| Feucht           | Wolkenwassereintrag (empirisches Verfahren)          | 7*7 km²                | <b>&lt;</b> 1%   |
| Gesamt           | Geostatistische Anpassung der<br>Rasterauflösung     | 1*1 km²                | 100 %            |

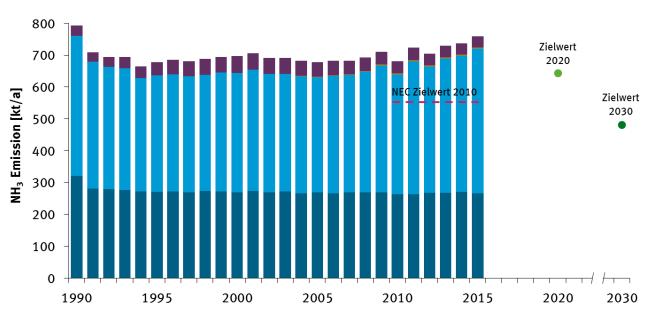
Die atmosphärische Deposition wird für die drei Eintragspfade separat ermittelt.

- > Verfügbarkeit von Messwerten
- > Prozesskenntnisse mit Hilfe von Modelle
- > Modelle ermöglichen Szenarienrechnungen zur Definition von Minderungsstrategien

#### **LOTOS-EUROS**




#### **LOTOS-EUROS**


#### Methodische Grundlagen, leicht verändert gegenüber PINETI-2

- ➤ ECMWF-Meteorologie, aktuelle Daten
- ➤ GRETA Emissionen (Submission 2017); vorher PAREST-Emissionen
- ➤TNO-MACC-III Emissionen (2016)
- ► Jahresgang der Ammoniak-Emissionen
- **≻**Kompensationspunkt
- ➤ Einzelne Bug-fixes im LOTOS-EUROS Modell
- ➤ Rauigkeit von Agrarland im Winter nach unten angepasst

#### Stickstoffoxidemissionen in Deutschland seit 1990



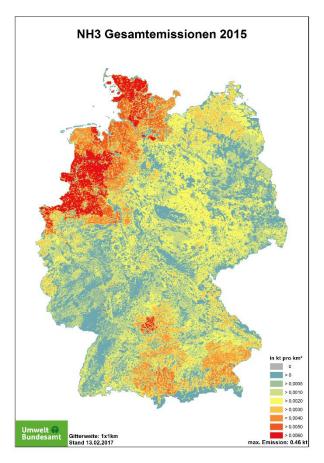
#### Ammoniakemissionen in Deutschland seit 1990



- Emissionen aus nicht-landwirtschaftlichen Bereichen
- Lagerung von Gärresten
- landwirtschaftlich genutzte Böden (inkl. Ausbringung von Wirtschafts- und Mineraldüngern)
- Tierhaltung und Wirtschaftsdüngermanagement

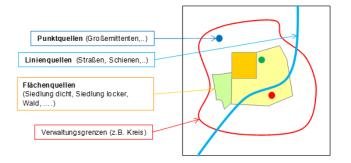
- > 759 kT im Jahr 2015
- ▶ 95 % entstehen in der Landwirtschaft
- Verringerung der Emissionen aus der Tierhaltung wegen Rückgang der Rinderbestände.
- Steigerung der Emissionen aus Mineraldüngung wegen Zunahme an Harnstoffdünger
- Ziel der NEC-Richtlinie (550 kt) wurde deutlich verfehlt.
- Neue Zielwerte aus NERC-Richtlinie sind relative Reduzierungsverpflichtungen:
- 2020: 5% gegenüber 2005
- 2030: 29% gegenüber 2005

## Änderungen im Emissionsinventar


<u>Submission 2015:</u> Emissionsfaktors für Harnstoff → circa + 70 kt im Sektor "Mineraldüngerausbringung - 3Da1"

Submission 2016: Gärrestelagerung (31) und −ausbringung (3Da2c) neu im Inventar → ca. + 52 kt

<u>Submission 2017:</u> Separate Erfassung der Wirtschaftsdüngerausbringung in 3Da2a (vorher in den Sektoren der Tierkategorien 3Bx erfasst)


**Submission 2018:** Erneute Änderung des Emissionsfaktors für Harnstoff erwartet

## Räumliche Verteilung der Emissionsjahreswerte nach Quellgruppen



#### **GRETA – Gridding Emission Tool for ArcGIS**

https://www.umweltbundesamt.de/publikationen/arcgis-basierte-loesung-zur-detaillierten



#### **Grundlagen-Daten**

- > ZSE-Emissionen
- PRTR-Emissionen
- > Landkreis-Emissionen Thünen Institut
- CORINE Landcover
- > Beschäftigungsstatistiken
- Verkehrsdaten
- etc.

## Verbesserung der räumlichen Struktur der Emissionen

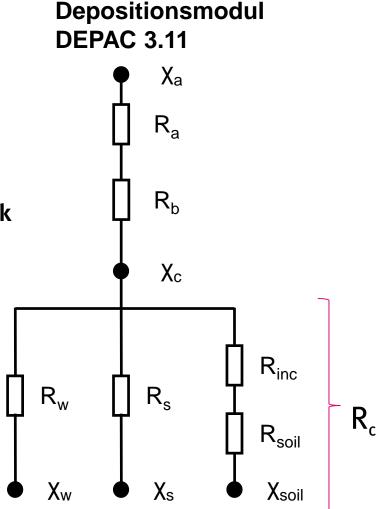
## **Trockene Deposition**

#### Widerstandsmodell:

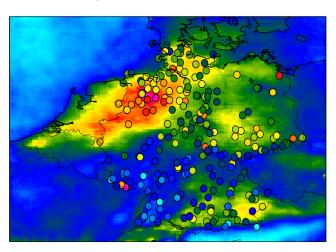
 $R_a = atmosphärischer Widerstand$ 

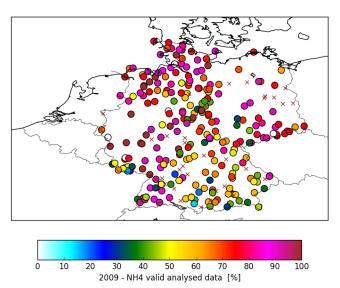
 $R_h = Grenzschichtwiderstand$ 

 $R_c = Oberflächenwiderstand$ 


 $V_d$  = Depositionsgeschwindigkeit

Stoff- und Landnutzungsabhängige Parametrik

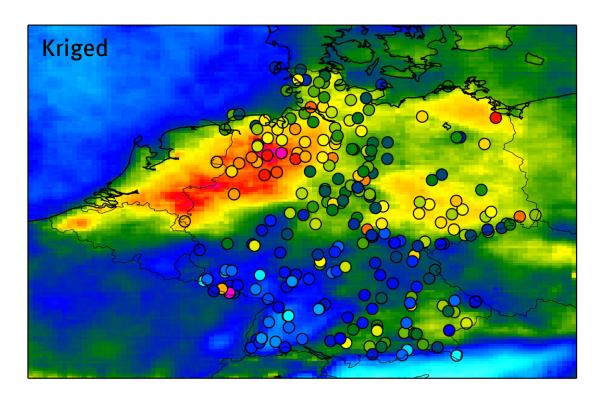

$$V_d = \frac{1}{R_a + Rb + Rc}$$

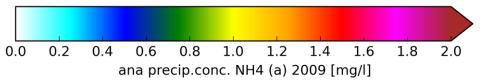

## **Depositionsfluss (F):**

$$F = Vd * C_{atm}$$



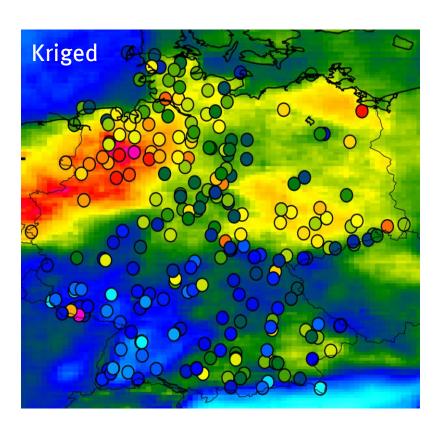
## **Nasse Deposition**

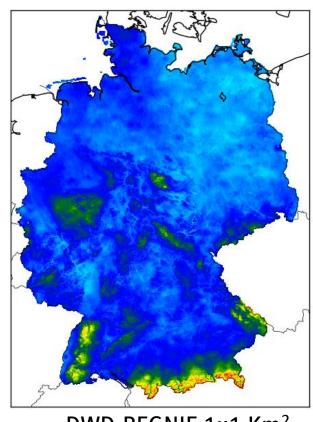


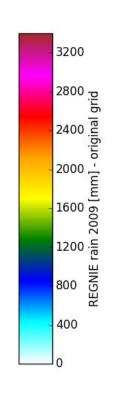




- Modellierte Konzentration im Niederschlag
- Residual Kriging mit gemessener Konzentration im Niederschlag
- Depositionsfluss mit DWD-Niederschlagsdaten
- Messdaten nasse Deposition
- Länderdaten → herzlichen Dank für die gute Zusammenarbeit
- Ca. 300 Stationen aus
  - Forstlichem Umweltmonitoring
  - Immissionsmessnetz
  - Hydrologischen Messnetz

## **Nasse Deposition**


## NH<sub>4</sub> Regenwasserkonzentrationen - Einfluss der Messdaten



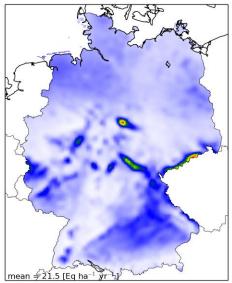




## **Nasse Deposition**

## **Nasse Deposition = Wasserkonzentration \* Niederschlag**








DWD-REGNIE 1x1 Km<sup>2</sup>

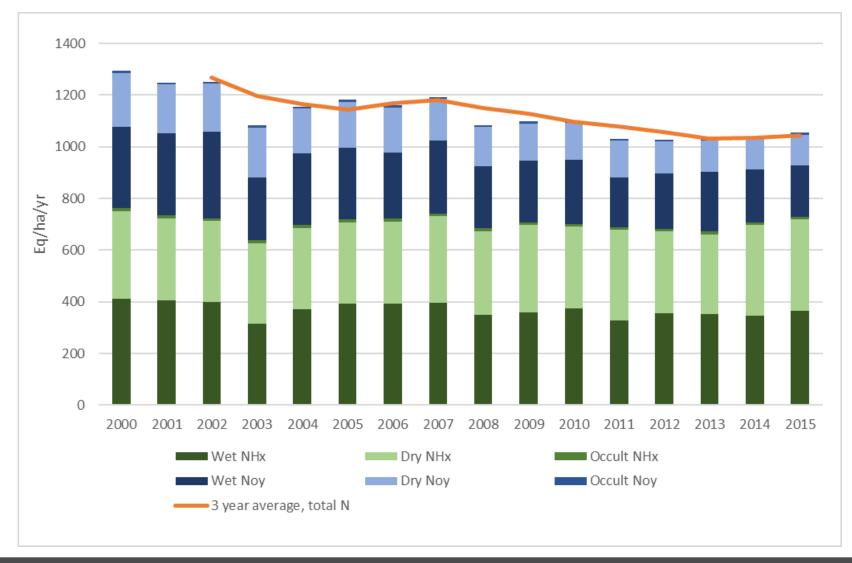
## **Feuchte Deposition**

$$F_{feucht} = F_{wolkenwasser} * C_{ww}$$

#### **DEPOSITION VON WOLKENWASSER**

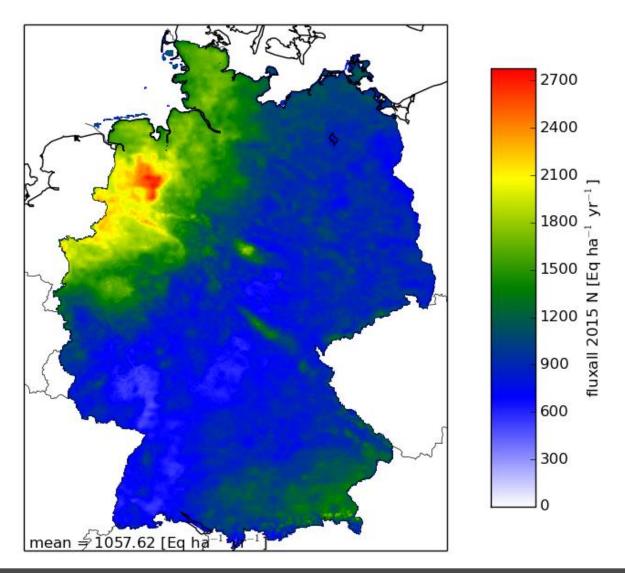


#### ANSATZ VON KATATA ET AL. (2009; 2011) ANHAND COSMO-EU DATEN


- abhängig vom Blattflächen-Index (LAI)
- für Wald-Landnutzungsklassen

# SCHADSTOFFKONZENTRATION IM WOLKENWASSER

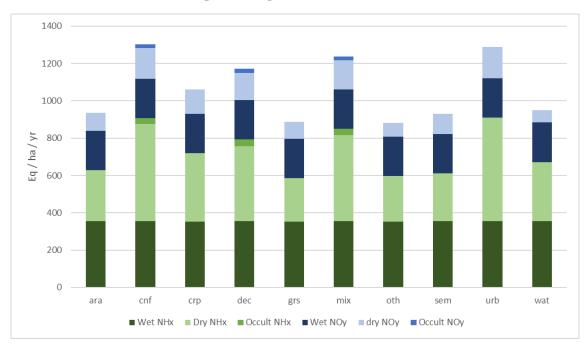
$$C_{ww} = C_{niederschlag} * EF$$


| Species                       | Enrichment Factor<br>(EF) |
|-------------------------------|---------------------------|
| S0 <sub>4</sub> <sup>2-</sup> | 7.0                       |
| NO <sub>3</sub> -             | 8.6                       |
| NH <sub>4</sub> +             | 9.2                       |

## **Modellierte Stickstoffdeposition PINETI-3 Projekt**



 $NH_X = 2/3$  $NO_Y = 1/3$ 


## Modellierte Stickstoffdeposition PINETI-3 Projekt - Landnutzungsmosaik



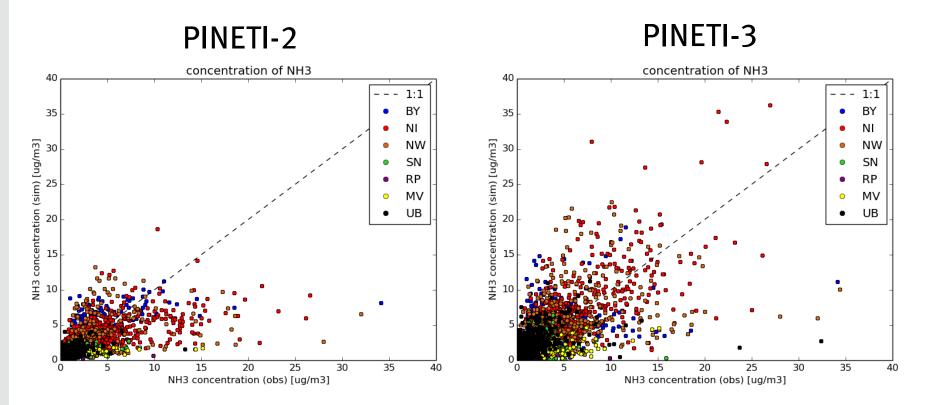
## Modellierte Stickstoffdeposition PINETI-3 Projekt - Landnutzungsabhängig

| Landnutzungs-<br>klasse       | Englischer Name<br>(Abkürzung) |
|-------------------------------|--------------------------------|
| Wiesen und Weiden             | Grassland (grs)                |
| Ackerland                     | Arable land (ara)              |
| Mischwald                     | Mixed forest (mix)             |
| Nadelwald                     | Coniferous forest (cnf)        |
| Laubwald                      | Deciduous forest (dec)         |
| Wasserflächen                 | Water (wat)                    |
| bebautes Gebiet               | Urban area (urb)               |
| semi-natürliche<br>Vegetation | Semi-natural vegetation (sem)  |
| Dünen und<br>Felsfluren       | Other (oth)                    |
| Dauerkulturen                 | Crops (crp)                    |

#### **MITTELWERTE 2013-2015**

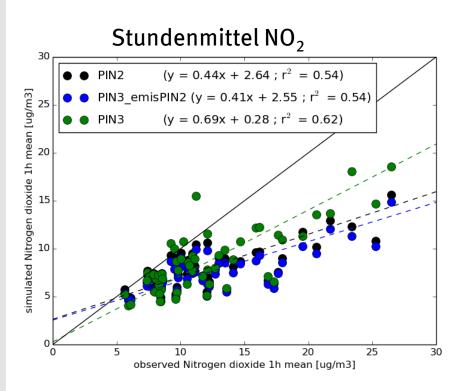


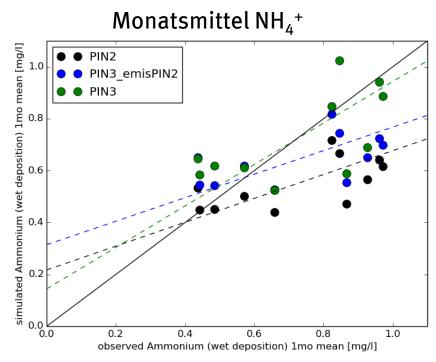
- Unterschiede auf Grund unterschiedlicher Parametrik (trocken und feucht)
- Landnutzungsspezifische Datensätze verfügbar
- Zuordnung zur tatsächlichen Landnutzung möglich


## Modellierte Stickstoffdeposition PINETI-3 Projekt - Rasterdatensätze

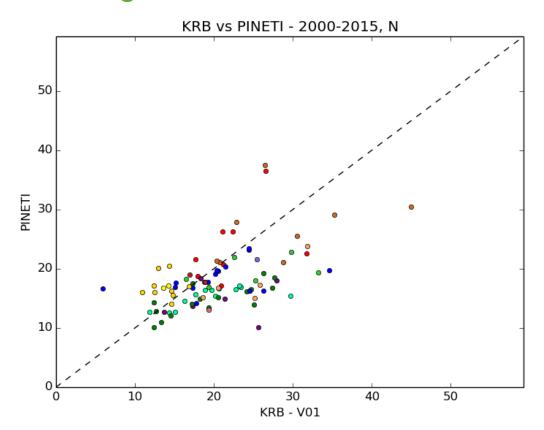
- Ergebnisse liegen als Rasterdatensätze vor
- Für alle Landnutzungsklassen
- Für alle Depositionspfade
- Für alle Schadstoffe
- Für alle Jahre
- → können beim UBA bestellt werden
- → Regionalspezifische GIS Auswertung durch Nutzer

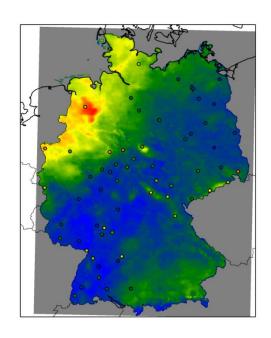
## **Evaluierung gegen NH<sub>3</sub>-Konzentrations-Messdaten (2002-2014)**


Jahresmittelwerte (Messdaten aus unterschiedlichen Messnetzen):


→ Die veränderte räumliche Struktur der Emissionen (GRETA) führt zu einer Verbesserung der Korrelation



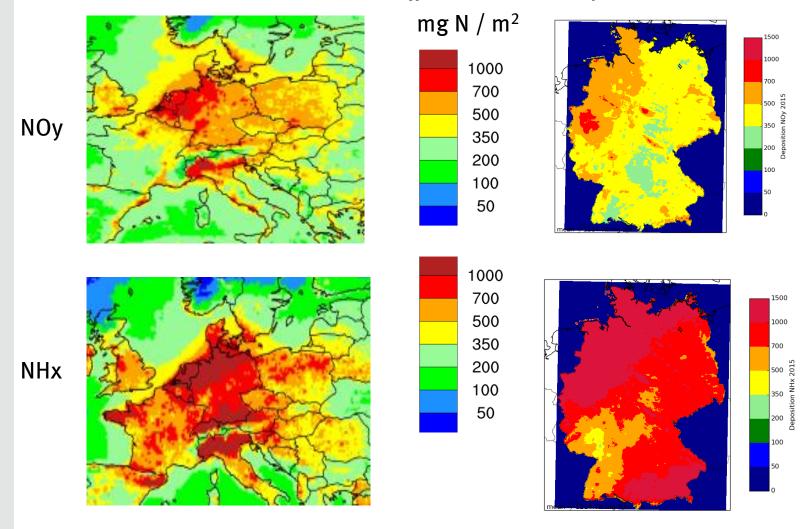

## **Evaluierung mit weiteren Messdaten**


#### **Verbesserung der Korrelation**



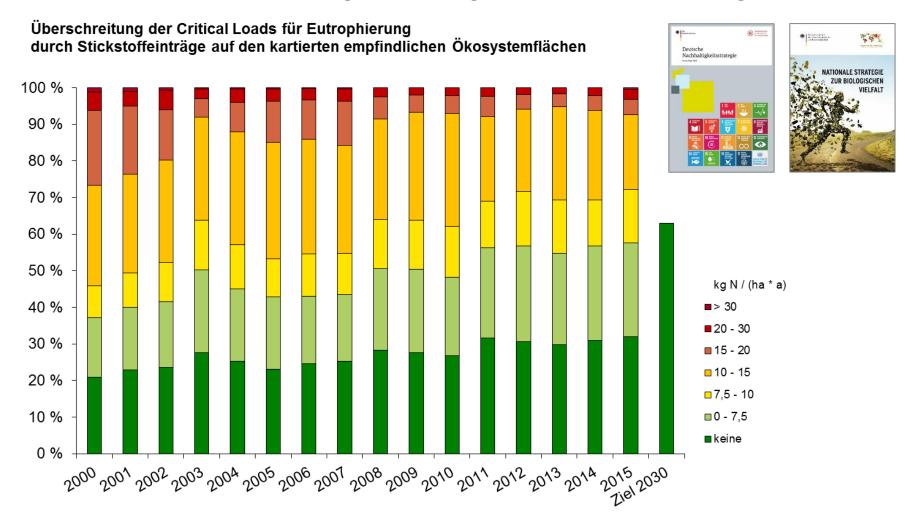


## **Evaluierung mit Kronenraumbilanzen**






- Evaluierung durch das Thünen-Institut (Forstliches Umweltmonitoring)
- Methode <u>V01</u>: De Vries et al. (2001) *Intensive Monitoring of Forest Ecosystems in Europe* (ICPF TR 2001)
- ca. 55% der Flächen im Bereich von +-20%
- Unterschätzungen insbesondere auf stärker belasteten Flächen
- Mögliche Gründe für Abweichungen: KRB, PINETI, nicht-Repräsentativität der Flächen in der jeweiligen räumlichen Bezugseinheit


## Vergleich mit EMEP-Modelldaten

## Sehr gute Übereinstimmung bei NH<sub>x</sub>, weniger bei NO<sub>y</sub>



## Anwendung Indikator Eutrophierung terrestrischer Ökosysteme

#### Nationale Zeitreihe für Nachhaltigkeitsstrategie & Biodiversitätsstrategie



## **UBA-Kartendienst Hintergrunddeposition Stickstoff**



#### Ausblick - Nächste Schritte

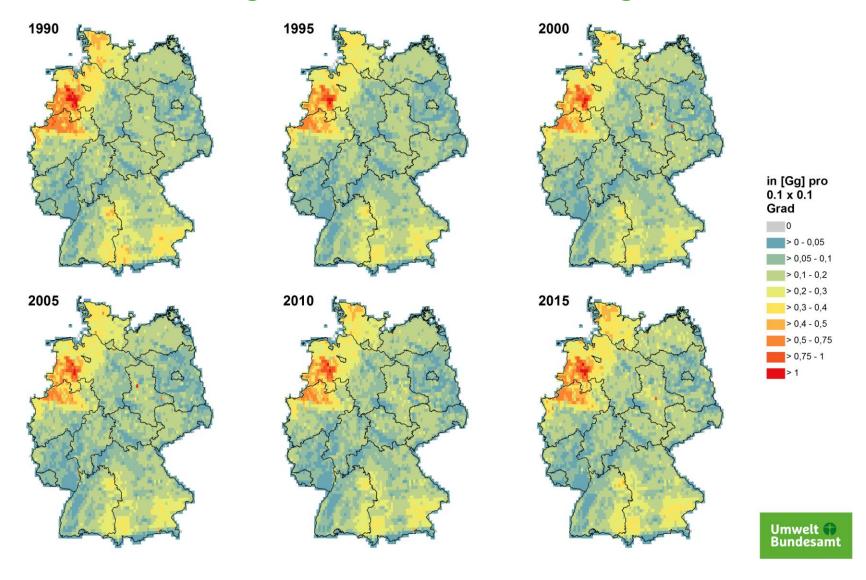
#### **Projektergebnisse PINETI-3**

- > Fachlicher Abschluss des Projekt
- Veröffentlichung Abschlussbericht
- Sitzung Bund-Länder-Fachgespräch Stickstoffdeposition
- Aktualisierung Kartendienst

#### Stickstoffdeposition allgemein:

- Ziel 1: Bewertungsgrundlagen kontinuierlich verbessern
- > Ziel 2: Kontinuierliche Verbesserung des Vollzugsinstrumentariums

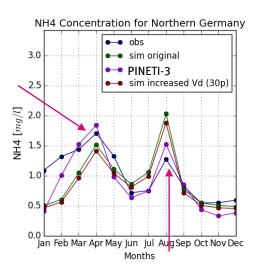
#### Inhaltliche Wunschliste UBA:

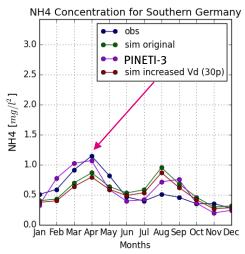

- Fortschreibung der Zeitreihe
- Quantifizierung Doppelzählung (Punktquellen /Anlagen / Wirtschaftsdüngerausbringung)
- \* Kombination von großräumigen und lokalen Ausbreitungsrechnungen
- Räumliche und zeitliche Auflösung (Deposition / Emission)
- Szenarien, Rückrechnungen
- Kartendienst Erweiterung des Angebots

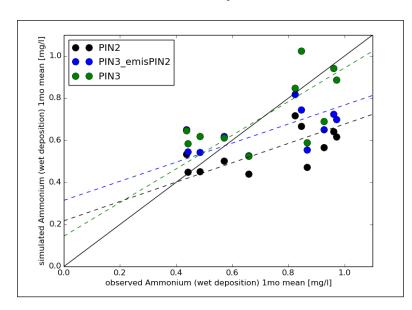


## Vergleich mit Einzelmessungen

|                     | total N    | total N | total N  | total N  |
|---------------------|------------|---------|----------|----------|
| kg N / ha / yr      | monitored  | MAPESI  | PINETI-2 | PINETI-3 |
|                     | at station | 2007    | 2009     | 2009     |
| Forellenbach        | 13-15      | 37      | 19       | 20       |
| (coniferous forest) |            |         |          |          |
| Neuglobsow          | 9.5        | 18      | 12       | 14       |
| (coniferous forest) |            |         |          |          |
| Bourtanger Moor     | 25 (16-35) | 38      | 20       | 20       |
| (semi-natural)      |            |         |          |          |


## Emissionsentwicklung 1990 – 2015: Berichterstattung an EMEP





## **Modellierung mit LOTOS-EUROS im PINETI-3 Projekt**

### Evaluierung mit Monatsmittelwerten der NH<sub>4</sub>-Konz. in der nassen Deposition

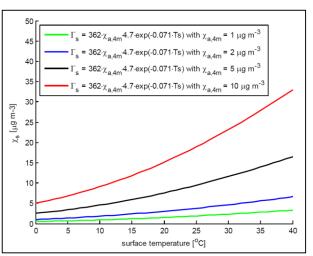
Übereinstimmung mit nassen Depositionsdaten ist besser mit dem neuen Jahresgang der NH<sub>3</sub>-Emissionen







Verbesserung der Korrelation


## **Parametrisierung in LOTOS-EUROS**

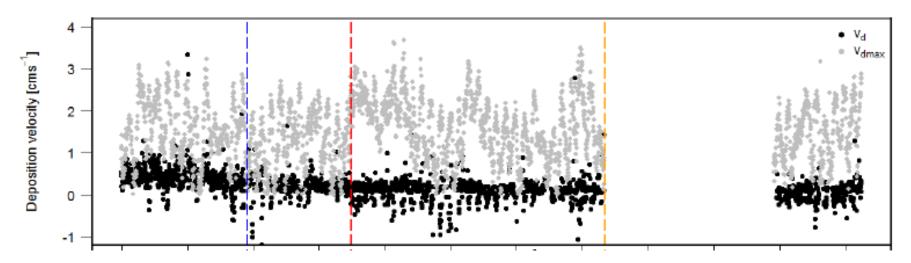
#### SEIT PINETI<sup>2</sup> VERWENDET LOTOS-EUROS PARAMETRISIERUNGEN DES KOMPENSATIONSPUNKTES

Für die Pfade Austausch zwischen Atmosphäre und a) Stomata, b) Blattoberfläche, c) Boden Parametrisierung in allen Landnutzungsklassen einheitlich (basierend auf Flussmessungen)

Kompensationspunkt (C<sub>surf</sub>) Abhängig von der Temperatur und der NH<sub>3</sub>-Konzentration der Atmosphäre (bei Stomata zusätzlich von der NH<sub>3</sub>-Konzentration in der Pflanze)

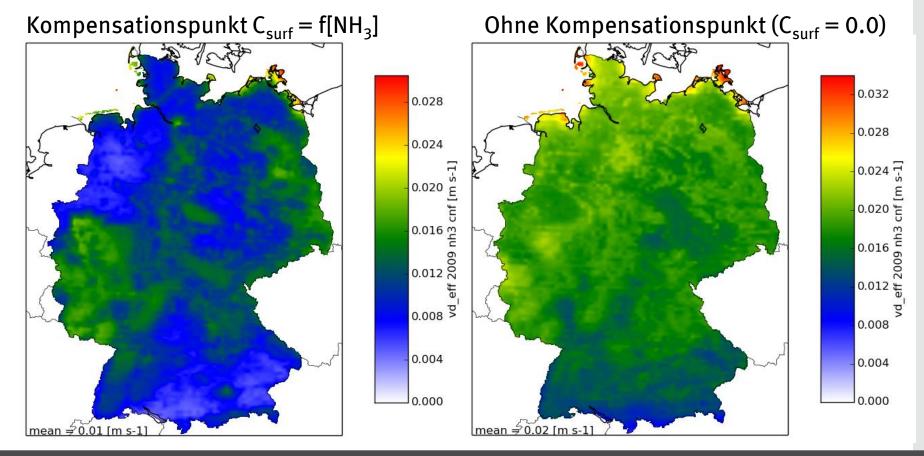
Je höher die NH3-Belastung, desto höher der Kompensationspunkt




Wichink Kruit, R. J., et al. (2010). "Modeling the surface-atmosphere exchange of ammonia." Atmospheric Environment 44(7): 945-957 Wichink Kruit, R. J., et al. (2012). "Modeling the distribution of ammonia across Europe including bi-directional surface-atmosphere exchange." Biogeosciences 9(12): 5261-5277.

van Zanten, M. C., et al. (2010). Description of the DEPAC module: Dry deposition modelling with DEPAC\_GCN2010. Bilthoven, Netherlands, TNO.

## Flussmessungen im Emsland – Zöll et al., 2016

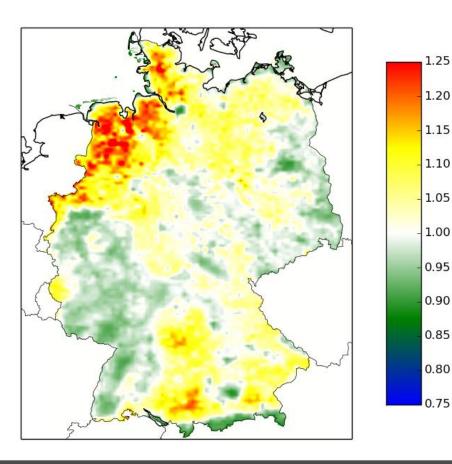



Theoretischer Maximalwert ohne Kompensationspunkt Gemessene Vd

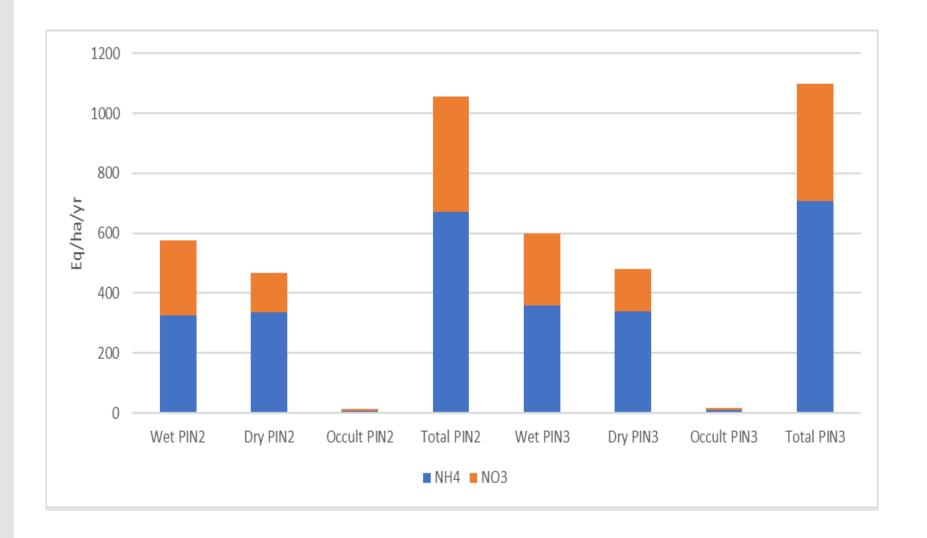


## Einfluss auf die effektive Depositionsgeschwindigkeit

Sensitivitätslauf mit dem Theoretischen Maximalwert also ohne Kompensationspunkt ( $C_{surf} = 0$ )

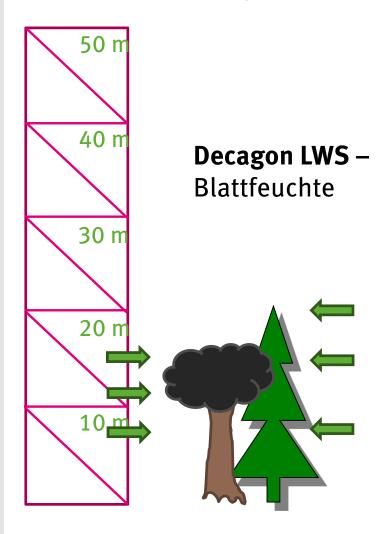



## Relation der modellierten Gesamtdeposition


## Modellergebnis <u>ohne</u> Kompensationspunkt

#### Modellergebnis <u>mit</u> Kompensationspunkt

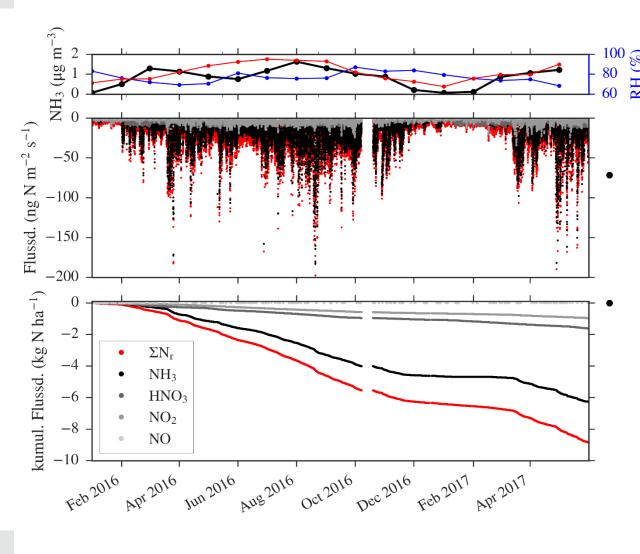
- ➤ Je höher die NH3-Belastung, desto höher der Kompensationspunkt
- ➤ Der Kompensationspunkt verringert die Effektive Deposition, es kann sogar tagsüber zu Emission von NH<sub>3</sub> kommen
- Vernachlässigung des Kompensationspunktes führt zu erhöhter trockener Deposition in Quellgebieten, verringert jedoch den Ferntransport
- Änderung ist im Mittel nur 3-4 % für mittleren Gesamteintrag in DEU




## Zeitreihe 2000-2015 & Vergleich zwischen PINETI-2 und PINETI-3



## FORESTFLUX – Projektaufbau





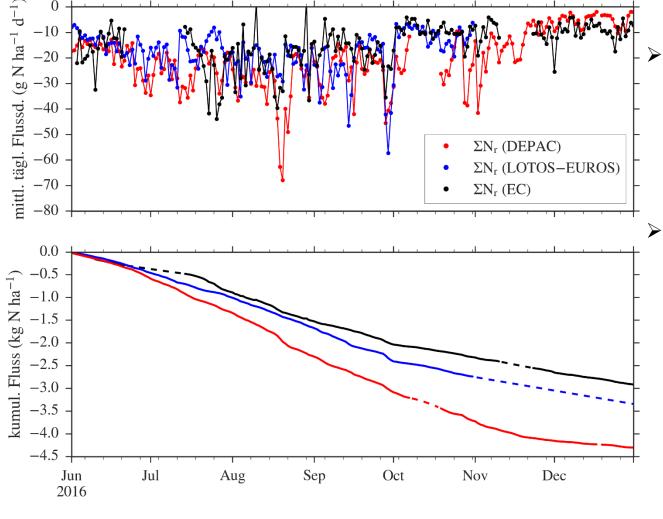



## FORESTFLUX – vorläufige Ergebnisse





Praktisch lückenlose Modellergebnisse seit Januar 2016


 $NH_3$ -Deposition (4.9 kg N ha<sup>-1</sup> Jahr<sup>-1</sup>) > 70 % der  $\Sigma N_r$ -Deposition (6.7 kg N ha<sup>-1</sup> Jahr<sup>-1</sup>)

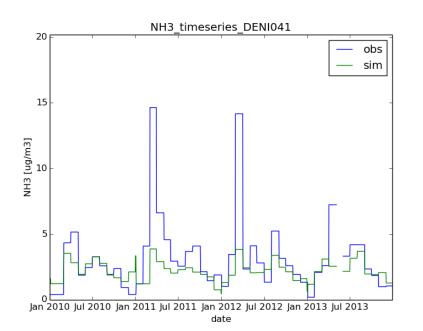
## FORESTFLUX – vorläufige Ergebnisse



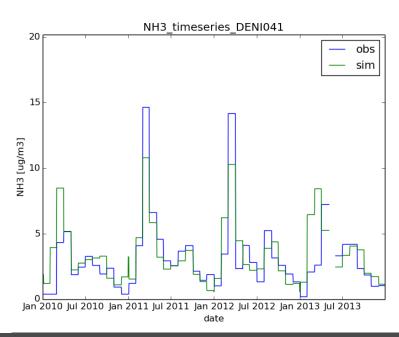


- Bereits sehr zufriedenstellende Übereinstimmung aller drei Varianten im Rahmen der Modellunsicherheiten
  - Ergebnisse vorläufig: EC-Dämpfungskorrektur und DEPAC-Parametrisierung nicht final ···· weitere Annäherung denkbar (positives Zeichen für Validierung)




## **Modellierung mit LOTOS-EUROS im PINETI-3 Projekt**

## Zeitlicher Vergleich Beispielsstandort Weserbergland


→ Übereinstimmung gemessenen Konzentrationsverläufen ist besser mit dem neuen Jahresgang der NH<sub>3</sub>-Emissionen



## PINETI-2



## PINETI-3

